[ENVI] 遥感图像几何校正及示例

几何校正

  1. 系统性几何畸变:传感器本身引起的
    地面卫星接收站已完成
  2. 非系统性几何形变:传感器平台高度、姿势;曲率;空气折射;地形等等

几何校正:利用地面控制点和集合校正数学模型来校正非系统因素产生的误差,由于校正过程中会将坐标系赋予图像数据,所以此过程包括了地理编码。

基于自带定位信息的几何校正 低分辨率

对于重返周期短、空间分辨率较低的卫星数据,如AVHRR、MODIS、SeaWiFS等,地面控制点选择有难度。
这是,可以利用卫星传感器自带的地理定位文件进行几何校正,校正精度主要受地理定位文件影像

  1. 已有传感器工具的数据可用工具校正,以下以MODIS为例。
  2. 没有模型的数据用GLT方法校正,以下用风云三号为例。

基于GLT几何校正法:输入几何文件,生成一个GLT查找表,初识像元在最终输出后的地理位置。
GLT(Geometry Lookup File):地理查找表

MODIS数据为例

基于已有工具

  1. 使用OpenAs打开数据文件:[File]–>[OpenAs]–>[EOS]–>[MODIS]–>数据选择(.hdf)
    [Data Manager]可查看:Emissive发射率、Radiance辐射率、Reflectance大气表观反射率、Longtitude,Latitude,Quality地理参考信息
  2. 选择校正模型:[Toolbox]–>[Geometric Correction]–>[Georeference by Sensor]–>[Georeference MODIS]
  3. 选择进行几何校正的文件:选择大气表观反射率Reflectance
  4. 参数设置:UTM(Projection)、WGS84(datum)、Perform Bow Tie Correction是否消除蝴蝶效应
  5. 校正参数,输出

叠加到Google Earth查看校正结果:
[Toolbox]–>[SPEAR]–>[SPEAR Google Earth Brigde]

风云三号数据为例

基于GLT的国产卫星校正方法

  1. 打开数据Open,风云三号(.he5),进入[HEF5数据集选择面板]
  2. 选择表观发射率信息EV_RefSB,打开
  3. 同样方法,再打开Latitude、Longitude位置信息
  4. 生成GLT地理查找表文件:[Toolbox]–>[Geometric Correction]–>[Build GLT]
  5. 分别选择X(Longitude),Y(Latitude)数据
  6. 上下都选择Geographic Lat/Lon
  7. Output Rotation旋转角度,设置为0。输出GLT
  8. 利用GLT文件进行几何校正:[Toolbox]–>[Geometric Correction]–>[Georeference from GLT]
  9. 分别输入GLT,与带校正影像(EV_RefSB数据)。输出

遥感图像的几何校正 中等分辨率

针对中等分辨率图像的几何校正

图像校正(Rectification):借助一组控制点,对一幅图像进行地理坐标的校正。

地面控制点:找到待校正图像上的点对应真实的坐标值

图像选点原则:

  1. 选取图像上易分辨且较精细的特征点:道路交叉点,河流弯曲或分叉处,海岸线弯曲处,飞机场,城廓边缘等
  2. 特征变换大的地区需要多选
  3. 图像边缘部分一定要选取控制点
  4. 尽可能满幅均匀选取

数量原则:

  1. 在图像边缘处,在地面特征变换大的地区,需要增加控制点
  2. 最小控制点(n+1)²(n为多项式次数)。保证一定数量的控制点,不是控制点越多越好,如一景TM的控制点数量在30-50左右

误差计算:RMSError = sqrt( (x1-x)²+(y1-y)² )
以下实验控制在5以下

重采样方法:

  1. 最近邻法
    这里写图片描述
  2. 双线性内插法
    这里写图片描述
  3. 三次卷积
    这里写图片描述

几何精校正流程图:
这里写图片描述

Image to Image

以一幅影像作为参考影像,校正另一幅
使用ClassicENVI

  1. 打开两个文件(待校正与参考影像)
  2. [Map]–>[Registration]–>[Select GCPs:Image to Image]–>选择Base Iamge(参考影像)、Warp Image(待校正影像)
  3. 选择控制点:两张图选择十字丝–>Add Point
    [Predict]根据之前的点来找到这个点大概的位置
  4. 自动找点:[Options]–>[Automatically Generate Tie Points]–>选择波段匹配(一般选Band5,信息量大一些)–>参数设置
  5. 查看RMS>5,删除RMS较大的点:[Show List]–>选取点–>delete
  6. [Options]–>[Warp File(as Image to Map)]
    Warp File:warp file变为base file的分辨率
    Warp File(as Image to Map):可选择分辨率

Image to Map

为Image赋予坐标,为控制点输入坐标方式
使用Classic的ENVI

  1. 打开待校正图像与参考图像
  2. [Map]–>[Registration]–>[Select GCPs:Image to Map]
  3. 选择坐标系信息Beijing_1954_GK_Zone_20
    有N(Beijing_1954_GK_Zone_20N)是带代号的坐标系,没有N是不带代号的坐标系
  4. 选择像元大小,1:5万的地形图选择4m(X),4m(Y)保真度最好
  5. 控制点选择:十字丝确定–>输入坐标–>Add Point
  6. [Options]–>[Warp File]–>选择待校正影像–>[OK]–>选择相关参数(校正方法,重采样方法)。输出

ENVI图像自动配准功能

http://blog.csdn.net/summer_dew/article/details/78455345

ENVI官方教程:

  1. 几何校正:http://blog.sina.com.cn/s/blog_764b1e9d0102v1it.html
  2. 基于自带定位信息的集合校正:http://blog.sina.com.cn/s/blog_764b1e9d0102v1hh.html
已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页