[SARscape] InSAR技术基础应用 - 反演DEM

【InSAR】InSAR技术是利用雷达系统获取同一地区两幅SAR影像所提供的相位信息进行干涉处理,来获取地表的三维信息,可以建立目标地区的数字高程模型。另外一个重要应用是获取地表的形变

在这里插入图片描述

InSAR技术反演DEM

【思路】利用一对SAR数据的相干相位信息反演DEM

数据要求

若要反演DEM,则必须满足以下5个要求的数据对

  1. SLC数据对,要具有相位信息。例如做多视处理后相位信息就丢失了
  2. 数据拍摄的几何形态要一致,即入射角要一致
  3. 极化方式(VV、VH)要一致
  4. 轨道方向(升轨、降轨)要一致
  5. 数据覆盖范围具有重叠区

反演DEM的步骤

可先利用默认参数将过程跑一边,查看结果的快视图,判断哪个地方出了问题,再根据帮助文档(在工具左下角的问号图标打开帮助文档)修改相应参数

【工具位置】SARscape提供反演DEM的工具流,方便流程化处理:SARscape-->Interferometry-->InSAR DEM workflow

【使用前的准备工作】

  1. 【设置工作的默认文件夹】使用此工具流之前,设置系统参数,将数据缓存地址,输出地址等提前设置好,默认缓存数据的文件夹在C盘(C:\Users\PasserQi\AppData\Local\Temp\SARsTmpDir_***
  2. 【设置符合数据源的系统参数】使用此工具流之前,选择你使用数据的系统参数。例如此选择的是COSMO SkyMed HIMAGE 3米的数据,则选用VHR的系统参数:SARscape-->Preferences-->Load Preference-->VHR(better than 10m)
  3. 【设置制图精度】即DEM反演结果的分辨率,例如COSMO SkyMed HIMAGE 3米的数据可选择5米:SARscape-->Preferences-->General parameters-->Cartographic Grid Size(m)-->修改为5
  4. 【事先导入】使用此工具前,数据要先导入成slc数据
  5. 【保存工程】此工具流可以保存成工程(工具中间下放有一个保存按钮),方便随时打开重做
  6. 【生成快视图】在每一步中,可以在Global参数中,将Generate Quick Look设置成True,即生成快速图,方便查看和出图

在这里插入图片描述

一、基线估算

(1)基线估算的背景
【空间基线】卫星两次拍摄的位置是有一定的距离的,这个距离称为空间基线
【失相干】如果空间基线较长,两个数据就有可能失相干(即相位之间没有干涉信息)。故空间基线要满足一定的阈值,才能够进行InSAR分析
【时间基线】两次拍摄的时间相隔太长也会导致失相干(此为时间失相干)
只有在获得地面反射至少有两个天线重叠的时候才可以产生干涉,当基线垂直分量超过了临界值的时候,没有位相信息,相干性丢失,就无法做干涉

(2)基线估算的作用
用来评价干涉影像对的质量,检查数据是否满足基线阈值。计算基线、轨道偏移(距离向和方位向)和其他系统参数。
1.时间基线:越短越好
2.空间基线:在一定范围内越长(但要一定要远小于阈值),对地形、高程的探测敏感越高

(3)基线估算的工具
基线估算有两个工具

  1. 两景数据:SARScape-->Interferometry-->Interferometric Tools-->Baseline Estimation
  2. 多景数据:SARscape-->Interferometry-->Interferometric Tools-->Multi Baseline Calculation

(4)Baseline Estimation工具(两景数据的基线估算)说明
工具位置:SARScape-->Interferometry-->Interferometric Tools-->Baseline Estimation
操作说明:

  1. Input Master File:输入主影像,一般更早的那景为主影像
  2. Optional Files-->Output Baseline Root Name:可选,即输出结果。若不填即表示计算完打印一下就好,不输出到文件中

结果说明:

结果说明
Normal Baseline(m) = 180.504空间基线,在拍摄时两个传感器间隔的距离180.504米
Critical Baseline min-max(m) = [-6400.098] - [6400.098]临界基线,即若空间基线大于6400.098表示两个数据失相干了。一般在应用中需要小于临界基线的十分之一
Absolute Time Baseline (Days)=1时间基线
Range Shift (pixels) = 0.515 Azimuth Shift (pixels)=0.038数据在方面向、距离向的偏移量,之后可以通过配准来校正
2 PI Ambiguity height (InSAR) (m) = 58.9252PI模糊高程(即一周期的相位变化对应的高程变化)。相位变化是周期性的,相位变化2PI对应的高程变化量是58.925。此参数越小,高程测量的精度越高。此参数与空间基线是反比关系。
2 PI Ambiguity displacement (DInSAR) (m) = 0.016DInSAR精度为0.016
1 Pixel Shift Ambiguity height(Stereo Radargrammetry) (m) = 6285.378立体量测的精度6285.378m(哨兵数据适合做InSAR、不适合应用于立体量测)
1 Pixel Shift Ambiguity displacement (Amplitude Tracking (m) = 1.666振幅偏移量测,做大的形变(完全失相干的形变,如滑坡、冰川移动等)的精度是1.666米
Master Incidence Angle = 48.963 Absolute Incidence Angle difference = 0.011主影像入射角48.963,主从影像相差0.011
二、配准

【配准】主辅影像基于相位的配准
【作用】将多幅SAR影像进行地理配准,统一栅格单元的位置
【工具位置】SARscape-->Basic-->Intensity Processing-->Coregistration
【配准结果】_rsp文件。若没有配准好,将多景进行彩色显示,会产生重影
【说明】
1.Input File List:参与配准的SAR影像(_pwr强度数据)
2.Input Reference File:配准的主影像(_pwr强度数据)
3.DEM File:可选项(_dem文件)。若是Sentinel数据必须提供,哨兵数据就是基于DEM进行配准的
4.Coregistration With DEM:是否用DEM配准,设置为True

三、生成干涉图&干涉去平

【生成干涉图&干涉去平】两个相位共轭相乘所得结果即为干涉图。但干涉图具有平地效应,需要干涉去平

【干涉条纹】:即是干涉相位图形化显示的结果,可以打开*_int_ql.tif干涉快视图进行查看

  1. 一个颜色周期就代表相位的一次2π变化:红色-黄色-蓝绿色为一个完整的2PI变化周期
  2. 干涉条纹越密集,此地方的地表高程变化越大,起伏的越厉害。这些是要保留下来的地形相位
  3. 间隔相同,有规律的条纹是由于平地效应所造成的,可以通过去平工具去除

在这里插入图片描述
在这里插入图片描述
【去平之后的干涉图像】:去除间隔相同,由平地效应造成的干涉条纹。保留因地形起伏、高程起伏所导致的干涉条纹。可以打开*_dint_ql.tif来查看。接下来就是进行滤波,去除一些噪声,让干涉条纹变得更加平滑。

在这里插入图片描述

四、自适应滤波&相干性计算

【自适应滤波&相干性计算】对干涉图进行滤波,抑制斑点噪声,提高相干性,使干涉条纹更加平滑。得到相干性图(_cc_ql.tif)、滤波后的干涉图(_fint_ql.tif)

【工具说明】
1.Adaptive Filter and Coherence Generation-->Filtering-->Goldstein Min Aplha、Goldstein Max Alpha
若要增加滤波强度,可同步增加这两个参数,Max不要超过4,Min可以改为1

【滤波后干涉图】
在这里插入图片描述
【相干性图】代表每个像元的相干性,值处于0到1之间

  1. 值越大(图中亮的区域),表示相干性越好,得到的结果越精确
  2. 黑色区域代表无意义、无信号的区域,噪声很大,都是不可信,需要利用插值进行处理

在这里插入图片描述

五、相位解缠

(1)相位解缠
得到连续的地形变化
在这里插入图片描述
(2)分解等级
Unwrapping Decomposition Level
解缠会对数据进行过采样,即先采样成低的分辨率,再进行解缠,解缠结束后,再采样成高分辨率。
分解等级即是指此采样的倍数,最高不能超过3。倍数越大,重采样更粗,处理的速度更快,可以避免一些解缠的错误。一般对特殊地形采取更高的采样倍数。若保持原有分辨率进行采样,可设置为-1

(3)解缠相干性阈值
Unwrapping Coherence Threshold
表示:相干性小于此阈值的区域不具有意义,故不进行解缠。这个值设的越大,代表对相干性越严格,解缠结果就越少

(4)结果
解缠结果(*_upha.tif)出现类似状况,可以增大解缠相干性阈值,忽略噪声区域,让结果更平滑
在这里插入图片描述

六、轨道精炼&重去平

(1)轨道精炼&重去平
【背景】当轨道参数不够精确,影响从干涉相位转变为地形高度

  1. 使用GCP重新定义基线参数
  2. 计算相位偏移(如获取绝对相位值)
  3. 重新修改解缠图像的头文件中的轨道参数

【轨道优化】通过人为添加的GCP点,进行轨道重计算
【效果】轨道参数不精确会导致干涉图上有大的轨道残差(即分布在整个干涉图上的大条纹),通过GCP控制,轨道误差去除的效果是非常明显的

(2)工具使用说明
【步骤一】创建控制点
在这里插入图片描述
【步骤二】选择参考文件
在这里插入图片描述
【步骤三】选择控制点
背景:在光学遥感中GCP代表的是已知坐标的点(如河流拐点、道路交点等地表特征点)。但在SAR影像中,GCP选的是相位稳定的点,相干性高,相位没有发生变化的点,即平地点
GCP点个数:轨道精炼是基于多项式,若GCP点太少,程序会将默认的三次多项式降到二次多项式,建议选择10个以上
选择原则:选高程没有变化的地方(即平地)

  1. _fint滤波后干涉图像中,平地即是条纹未变化区域,即要避免选择条纹变化区域(地形起伏的区域),用彩色显示干涉条纹辅助观察(右键out_fint数据-->Change Color Table->Rainbow
  2. 由于upha解缠结果即代表地形起伏,则在解缠结果中,平地即是比较平滑点,要避开噪声点

在这里插入图片描述
【步骤四】选择GCP之后,即是Refinement and Re-flattening

(3)结果说明
重去平结果:_reflat_upha即根据新的轨道参数重新去平的结果
结果报告:若精度较差,可在刚才的基础上再次选择GCP,再做一两次
在这里插入图片描述

七、相位转高程&地理编码

(1)产品的相干性阈值
Product Coherence Threshold:此要大于等于解缠的阈值。小于此阈值的不转换为高程
(2)小波等级
【地形残差】参考的DEM一般分辨率是比较粗的(比如SRTM的90米分辨率的DEM),但通过此工具反演的分辨率可以达到5米,而90米作为5米的参考,就会导致一个地形残差(可以理解为数据空洞)
【小波等级】Wavelet number of levels,利用此方法修正的地形残差
【公式】 S A R 数 据 的 分 辨 率 ∗ 2 n ≈ 参 考 D E M 的 分 辨 率 SAR数据的分辨率*2^n ≈ 参考DEM的分辨率 SAR2nDEM,求出n即是此参数的值
例如:SAR分辨率为3米,参考的DEM使用的是90米的分辨率,可以解算出n=5( 3 ∗ 2 5 ≈ 90 3*2^5≈90 32590),则Wavelet number of levels设成5
(3)输出类型
1.Ellipsoidal:椭球高
2.Ellipsoidal and Geoidal
(4)设置内插
对小于产品相干性阈值的部分,用内插的方法进行填充。
在Geocoding参数中,Relax Interpolation设置为True
Dummy Removal:有效数据之外的边框数据是否去除,设置为True(将边框外的值改为NoData)

八、结果说明

【结果文件说明】
在这里插入图片描述
【结果预览】
在这里插入图片描述

相关推荐
著名雷达图像处理软件,提供完整的 提供完整的 提供完整的 SARSAR 数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像数据处 理功能,全面支持四种模式的:雷达强度图像理、雷达干涉测量( 理、雷达干涉测量( 理、雷达干涉测量( 理、雷达干涉测量( 理、雷达干涉测量( 理、雷达干涉测量( InSAR/DInSAR InSAR/DInSARInSAR/DInSAR InSAR/DInSAR InSAR/DInSAR InSAR/DInSARInSAR/DInSAR )、极化雷达处理( )、极化雷达处理( )、极化雷达处理( )、极化雷达处理( )、极化雷达处理( )、极化雷达处理( )、极化雷达处理( PolSARPolSARPolSAR PolSAR )、极化雷达干涉测量( )、极化雷达干涉测量( )、极化雷达干涉测量( )、极化雷达干涉测量( )、极化雷达干涉测量( )、极化雷达干涉测量( )、极化雷达干涉测量( )、极化雷达干涉测量( PoIInSARPoIInSARPoIInSAR PoIInSAR PoIInSAR ), 能让您轻松将原始 能让您轻松将原始 能让您轻松将原始 能让您轻松将原始 SARSARSAR数据进行处理和分析,输出 数据进行处理和分析,输出 数据进行处理和分析,输出 数据进行处理和分析,输出 数据进行处理和分析,输出 数据进行处理和分析,输出 数据进行处理和分析,输出 SARSAR 图像产品、数字高程模型( 图像产品、数字高程模型( 图像产品、数字高程模型( 图像产品、数字高程模型( 图像产品、数字高程模型( 图像产品、数字高程模型( DEM ) 和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面和地表形变图等信息,并可以将提 取的与光学遥感数据、理集成在一起全面升 SARSAR 数据应用价值。 数据应用价值。 数
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页