[SARscape] 多时相SAR影像的应用 - 监督分类、提取水稻种植区 - 以Sentinel-1A数据为例

SARscape工具操作可查看:SARscape工具集

SAR影像分类

【基于SAR影像进行图像分类】根据特定物体后向散射系数的特征进行影像分类

举例:水稻种植区提取技术(Sentinel-1A数据为例)

目的:根据多时相的SAR影像提取水稻种植区
思路:

  1. 事先了解哪些地区是水稻种植区
  2. 将多时相的SAR影像进行预处理(导入、配准、滤波、地理编码),得到每一景的后向散射系数
  3. 根据事先了解的水稻种植区,查看水稻的后向散射系数与各个时相的关系,确定三个变化最大的时间
  4. 根据第三步获得的三景数据进行RGB合成,后用ENVI的信息提取工具进行监督分类

具体步骤:
在这里插入图片描述

(1)选择默认的系统参数
工具位置:Toolbox/SARscape/Preferences, Load Preferences->General(哨兵数据使用General系统参数)
(2)导入数据
(3)配准
工具位置:/SARscape/Basic/Intensity Processing/Coregistration
(4)滤波
工具位置:/SARScape/Basic/Intensity Processing/Filtering/De Grandi Multi-temporal Filtering
(5)地理编码与辐射定标
工具位置:/SARscape/Basic/Intensity Processing/Geocoding/Geocoding and Radiometric Calibration
(6)多时相后向散射系数时序分析
工具位置:/SARscape/General Tools/Time series Analyzer/Raster
1.打开多时相地理编码的数据_geo_meta便于组合分析
2.打开工具/SARscape/General Tools/Time series Analyzer/Raster
3.点击事先确定的水稻区域,查看在时序上水稻区域后向散射系数的变化
在这里插入图片描述
4.由图可知,随着不同水稻生长周期,稻田的后向散射系统发生较大的变化。选择0331/0506/0611三个时间进行RGB合成。5月份稻田后向散射系数较大,故在图上显示为绿色

(7)ENVI的信息提取
工具位置:/Classification/Classification Workflow
根据0331/0506/0611三个时间进行RGB合成的影像进行信息提取

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页